• درخت تصمیم گیری یکی از ابزارهای قوی و متداول برای دسته بندی و پیش بینی می باشد درخت تصمیم گیری برخلاف شبکه های عصبی به تولید قانون می پردازد یعنی درخت تصمیم گیریپیش بینی خود را در قالب یکسری قوانین توضیح می دهد در حالیکه در شبکه های عصبی تنها پیش بینی بیان می شود و چگونگی آن در خود شبکه پنهان باقی می ماند همچنین در درخت تصمیم گیری بر خلاف شبکه های
    • درخت تصمیم گیری decision tree

      داده کاوی: Data mining

      کمپانی های زیادی از ابزارهای داده کاوی بهره گرفته اند تا بتوانند داده های حجیم و گسترده را مورد تجزیه و تحلیل قراد داده و روندهای موجود را بیابند. به عنوان نمونه فروشگاه بزرگ وال-مارت یکی از بزرگترین فروشگاههای زنجیره ای اقدام به ایجاد پایگاه عظیمی از داده ها به حجم ۲۴ترابایت (ترلیون بایت)نموده است. با استفاده از این پایگاه وال _مارت قادر است تا بطور همزمان اقدام به گردآوری و تحلیل روند فروش کالا در۲۹۰۰شعبه فروش نماید. شاید جالب توجه باشد که بکمک ابزار هوشمندداده کاوی یا اکتشاف روند داده ها فروشگاه فوق می تواند اطلاعات کلیه خریدها در سطوح هر بخش از فروشگاه موجودی کالا درهر قفسه موجودی انبار پیش بینی فروش کاهش یا افزایش قیمت ها کالاهای مرجوعی توسط مشتریان و…را گردآوری نموده ودر اختیار مدیران فروشگاه توزیع کنندگان و مشتریان خود قرار می دهد. این فناوری نرم افزاری قدرت مانور بی نظیری برای وال _ مارت ایجاد کرده است تا بتواند کالاهای مناسب را در کوتاهترین زمان به هر یک از فروشگاههای متقاضی برساند.

      درخت تصمیم گیری

      درخت تصمیم گیری یکی از ابزارهای قوی و متداول برای دسته بندی و پیش بینی می باشد. درخت تصمیم گیری برخلاف شبکه های عصبی به تولید قانون می پردازد. یعنی درخت تصمیم گیریپیش بینی خود را در قالب یکسری قوانین توضیح می دهد در حالیکه در شبکه های عصبی تنها پیش بینی بیان می شود و چگونگی آن در خود شبکه پنهان باقی می ماند. همچنین در درخت تصمیم گیری بر خلاف شبکه های عصبی لزومی ندارد که داده ها لزوما بصورت عددی باشند.

      بعضی موارد وجود دارد که تنها درستی دسته بندی و پیش بینی مهم است و لزوما توضیحی برای پیش بینی انجام شده لازم نمی باشد. بعنوان مثال می توان یک شرکت مخابراتی را در نظر گرفت که می خواهد ببیند کدامیک از مشتریانش به خدمت جدیدی که ارائه می شود پاسخ مثبت می دهند. برای این شرکت درستی پیش بینی مهم است و شاید علت و توضیحی در مورد پیش بینی نیاز نداشته باشد. در حالیکه یک شرکت که قصد بازاریابی و کسب یکسری مشتری جدید دارد علاقه مند است که بداند که ویژگیهای مشتریانی که احتمالا به محصول این شرکت پاسخ می دهند چیست. در واقع با اطلاع ازاین ویژگیها این شرکت می تواند سراغ افرادی برود که با احتمال بیشتری به محصول این شرکت پاسخ مثبت می دهند. بعبارت دیگر این شرکت نیاز به یکسری قانون برای انجام بهتر فعالیت بازاریابی خود دارد. یکی از این قانونها می تواند بصورت زیر باشد

    • سایز : ۱.۲۸۶ مگا بایت
    • فرمت : doc
    • تعداد صفحات : ۶۶
  • برای مشاهده تصویر این فایل اینجا کلیک کنید.

FileHub ID : SID6354

برای ثبت امتیاز کلیک کنید
[کلی: میانگین: ]
لینک کوتاه این مطلب: https://filehub.ir/70GaH
<<ادامه  پایگاه داده‌های شیء گرا

۰ دیدگاه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

موبایلتو شارژ کن